Math Equations

i


saale pcm waale

it wasmonth ago :pensive:

5 Likes

Jee bhi nikala hai lmao

6 Likes

:pensive:waiting for gradHappy right now(not real)
so ja 1 baj rhe hai

5 Likes

Pichle October se sleep cycle non existent ho gayi thi, not gonna sleep till 2 lol

6 Likes

:pensive:mai toh chala chain churane
i

6 Likes

All I have to say is :sushi:!

4 Likes

Good job! Now, how about this to everyone:
x = 2
Find the value of a if 2z = 4.16.

5 Likes

first 100 digits of square root of 2 but you cant look them up

5 Likes

QUESTION: \lim_{x\rightarrow\infty}\frac{e^{8x}-1}{x}-((\lim_{x\rightarrow\infty}\frac{x^2-25}{x+5})+\prod^3_{k=3}k)

\displaystyle{ \lim_{x\rightarrow\infty}\frac{e^{8x}-1}{x} \\ \\\lim_{x\rightarrow\infty}\frac{\frac{d}{dx}[e^{8x}-1]}{\frac{d}{dx}[x]} \qquad\text{Apply L'Hopital's Rule} \\\lim_{x\rightarrow\infty}\frac{8e^{8x}}{1} \\8\lim_{x\rightarrow\infty}e^{8x}=8\cdot\infty=\infty }


\displaystyle{ \lim_{x\rightarrow\infty}\frac{x^2-25}{x+5} \\\lim_{x\rightarrow\infty}\frac{(x+5)(x-5)}{x+5} \\ \lim_{x\rightarrow\infty}x-5=\infty }


\displaystyle{ \prod^3_{k=3}k=1\cdot2\cdot3=6 }


\displaystyle{ \infty-(\infty+6)=\text{Undefined} }

5 Likes

I don’t really get this question.

x=2\\ z=\frac{4.16}{2}=2.08\\ a=?

5 Likes

also known as the L hospital rule (we all did this in calc to annoy our teacher xD… then we dubbed plus minus plinus and our teacher started questioning our sanity)

4 Likes

Exactly. But I will give you a hint:
Alphabet letters correspond to what x should be divided by (e.g. b should be divided by 2 because it is the 2nd letter of the alphabet).

Basically, divide 2.08 by __ to find a.

4 Likes

Bruh, this ain’t just math then. This is some cryptology shit idk about.

4 Likes

z is the 26th letter of the alphabet, so you divide 2.08 by 26 to find a = 0.08.

4 Likes

damn i didnt know The Hospital had a rule

also welcome back fad :]

3 Likes

Solve this in paper for a grand prize of 10 dp

5 Likes

QUESTION: \int^{\tan x}_{\frac{1}{e}}\frac{t}{1+t^2} \ dt+\int^{\cot x}_{\frac{1}{e}}\frac{1}{t(1+t^2)} \ dt=?

\text{Computing Antiderivative} \\ \int\frac{t}{1+t^2}dt \\ \text{Substitution} \\ u=1+t^2 \rightarrow du=2t \ dt \\ \frac{1}{2}\int\frac{1}{u} \ du \\ \frac{1}{2}(\ln(u)) \\ \text{Undoing Substitution} \\ \frac{\ln(1+t^2)}{2} \\ \text{Applying Limits} \\ [\frac{\ln(1+t^2)}{2}]^{\tan x}_{\frac{1}{e}}=\frac{1}{2}(\ln (1+\tan^2(x))-\ln(1+\frac{1}{e^2})) \\ \frac{1}{2}(\ln (\sec^2(x))-\ln(1+e^{-2}))


\text{Computing Antiderivative} \\ \int\frac{1}{t(1+t^2)} \ dt \\ \text{Partial Fraction Decomposition} \\ \frac{1}{t(1+t^2)}=\frac{A}{t}+\frac{B}{1+t^2} \\ 1=A(1+t^2)+Bt \\ t=0 \rightarrow A=1 \\ \therefore B=-t \\ \frac{1}{t(1+t^2)}=\frac{1}{t}-\frac{t}{1+t^2} \\ \int\frac{1}{t}-\frac{t}{1+t^2} \ dt=\int\frac{1}{t} \ dt - \int\frac{t}{1+t^2} \ dt

\int\frac{1}{t} \ dt=\ln(t)

\int\frac{t}{1+t^2} \ dt \\ \text{Substitution} \\ u=1+t^2 \rightarrow du=2t \ dt \\ \frac{1}{2}\int\frac{1}{u} \ du \\ \frac{1}{2}(\ln(u)) \\ \text{Undoing Substitution} \\ \frac{\ln(1+t^2)}{2}

\ln(t)- \frac{\ln(1+t^2)}{2} \\ \text{Applying Limits} \\ [\ln(t)- \frac{\ln(1+t^2)}{2}]^{\cot x}_\frac{1}{e} \\ \frac{1}{2}(\ln(1+e^{-2})-\ln(\csc^2x))+\ln|\cot x|+1


\text{Answer} \\ \frac{1}{2}(\ln (\sec^2(x))-\ln(1+e^{-2}))+\frac{1}{2}(\ln(1+e^{-2})-\ln(\csc^2x))+\ln|\cot x|+1 \\ \underline{\frac{1}{2}(\ln(\sec^2x)-\ln(\csc^2x))+\ln|\cot x|+1}

4 Likes

I didn’t think someone will do it, but yeh
Send trade request, ign is matter

5 Likes

I solved the equation just cause. You can keep the reward.

5 Likes

Daisy had 5 apples. She gave 2 to David. Calculate the size of the moon and multiply it by your receding hairline divided by how much you’ve seen your dad (0) and subtact and add to the Size of the Sun before World War II by adding with subtraction.

3 Likes